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Abstract. The use of microwaves to heat laminate panels occurs in a variety of industrial processes, from chemical
vapor infiltration (CVI) systems to the curing of adhesives in laminate panels. The electrical conductivity of the
materials used in these systems is typically temperature-dependent. Characteristically, the thickness of the laminate
panel is on the order of wavelength of the incident microwave, but the thickness of the laminate sheet is much
smaller. This allows us to apply asymptotic techniques to find averaged wave and heat equations when the direction
of the incident microwave is normal to, or tangent to, the laminates. These equations are analyzed in the small-Biot-
number limit and are numerically approximated using finite differences. The results are in excellent agreement for
small Biot numbers. More importantly, heating trends are observed for a wide variety of volume fractions for
two particular CVI applications. In addition, the effect of the incident polarization on the heating process are also
established. In particular, the use of a T E polarized incident microwave is shown to be inefficient in certain CVI
applications, but produces a more favorable temperature gradient.
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1. Introduction

The physical problems modeled and analyzed in this paper are motivated by the wish to
understand certain aspects of microwave-assisted chemical vapor infiltration. In this process
microwaves are used to heat a fibrous ceramic preform in the presence of a reacting gas.
This gas reacts with the fibers composing the preform and fills in the interstitial spaces with
material. If this filling process is complete and uniform, then a ceramic composite is fabricated
with a built-in fiber skeleton. This technique, although beset by many challenging problems,
has the potential to produce high-quality ceramic composites of arbitrary shape [1, 2].

One particular technique to construct composite panels is to alternately layer two types
of thin fibrous sheets and then apply microwaves in the presence of a reacting gas. This is
done, for example, to produce composite silicon-carbide (SiC) panels for high-temperature
applications [2]. In this process the first sheet is made of SiC fibers. The second is the same
sheet, except it has been embedded with carbon particles to enhance the electrical conductivity.

In this paper we model and study the microwave heating portion of this process as a prelude
for a more complete study involving the reacting gas. Specifically, we model each SiC sheet
as a thin ceramic slab which is characterized by its electrical and thermal parameters. Our
objective is to understand how microwaves heat the laminate composite constructed from these
thin slabs. In particular, we are concerned with the important issues of nonuniform heating
and thermal runaway. The former can be useful; if the interior is at a higher temperature, then
the gas will react with this region first and the preform will be filled from the inside to the
exterior, which is a desirable feature [4–10]. The latter can be disastrous; a slight change in
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input power can cause the temperature to jump beyond the melting point of the material. The
geometry we consider is shown in Figure 1a where the first slab has a thickness αD, and the
second, (1 − α)D, where the thickness D � λ, the wavelength of the incident microwave.
The total thickness off the panel L ∼ λ, so that many layers are required to construct this
composite.

Although the above model takes into account the microstructure of the thin constitutive
ceramic slabs which make up the laminate composite, it does neglect their individual porosi-
ties. The description of the electromagnetic heating of a laminate composite which takes into
account a rigorous description at the pore scale is indeed difficult.

An idealized model of microwave-assisted chemical vapor infiltration considered the pres-
ence of a single pore whose effect on the electromagnetic fields was ignored [6]. This decou-
pled the electromagnetic portion of the problem from the heat transfer and chemical parts, both
described by one-dimensional equations, and allowed a simplified analysis which described
pore filling and closure. Although this model gives a considerable amount of insight into this
complicated process, the inclusion of a more complicated porous structure necessitates a more
careful description of the microwave interaction and heating of the material.

Motivated by the above study we shall model the microwave heating of the laminate
structure shown in Figure 1b. Here the alternating slab constituents are the material and
the gas-filled pore; the former has thickness αD, the latter (1 − α)D. Again, the thickness
D � λ. Our model is two-dimensional, which allows a simple scalar description of the
electromagnetic fields, and takes into account electromagnetic and thermal coupling. This
two-dimensional assumption is a physical compromise between the single-pore model and
the realistic three-dimensional model. The latter is much more difficult to analyze, requiring
variational techniques to unwind the modal character of the electromagnetic propagation in
the structure [10].

The remainder of the paper will now be outlined. In Section 2 we present a general for-
mulation which describes the microwave heating of both laminate structures. In Section 3 we
present two asymptotic analyses which produce averaged equations that describe the heating
processes. In the first we apply the method of multiple scales and obtain standard homog-
enization results for the one-dimensional heat and reduced wave equations; it is presented
here for completeness. In the second we apply a regular perturbation expansion to the two-
dimensional heat and reduced wave equations. The result is an averaged heat equation with
averaged boundary conditions. However, the form of the averaged reduced wave equation and
the source term in the heat equation depend critically upon the polarization of the incident
wave. We note here that, although the motivation for deriving these averaged equations comes
from microwave-assisted chemical vapor infiltration, these equations hold for other heating
scenarios involving laminated structures.

In Section 4 we obtain approximate solutions to our equations in the small-Biot-number
limit. Here the temperature to leading order is spatially independent, but depends on time and
the electric field through a spatially averaged source term. These results are similar to those
for a solid slab [11,12], but differ significantly in the pore problem when the electric field of
the incident microwave is aligned with the Y -axis.

Section 5 contains our numerical results for the steady state temperatures of both laminate
panels and our small Biot number approximations. These produce S-shaped response curves
that are similar to those obtained for solid slabs [11]. The dependence of these curves on
laminate thickness, polarization, and other physical properties is discussed and contrasted.

Finally, in Section 6 we offer a short conclusion.
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Figure 1. Two problems under consideration: propagation vector perpendicular to the laminate direction (P );
propagation vector tangential to the laminate direction (T ).
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2. Formulation

We wish to study the microwave heating of two types of laminate panels composed of two
alternating slabs made of different materials. These materials are characterized by different
thermal and electrical properties. In both cases the panels occupy the region 0 < X < L. The
first laminate panel is sketched in Figure 1a and its slab boundaries are planes perpendicular
to the X-axis. The second is sketched in Figure 1b and its slab boundaries are parallel to the
X-axis. In both cases the panels are heated by a plane electromagnetic wave, incident from
X = −∞ and propagating in the +X-direction. Accordingly, we shall call the first case the P
problem, because the incident wave vector k′ = ω/C0x̂ is perpendicular to the slab interfaces,
and the second the T problem, because k is tangent to these interfaces. Here ω is the angular
frequency of the incident wave and C0 is the speed of light in free space; a time dependence
of e−iωt ′ is assumed throughout, and suppressed.

In the P problem the incident electric field is taken to be Einc = E0eik′Xẑ, where E0 is its
strength. This is done without loss of generality because the geometry of the laminate structure
is rotationally invariant in the YZ-plane. Consequently, the total electric field E is given in the
free-space regions X < 0 and X > L by

E = E0[exp(ik′X)+ � exp(−ik′X)]ẑ X < 0, (1a)

E = E0[ϒ exp(ik′X)]ẑ, X > L, (1b)

respectively, where ϒ is the transmission coefficient, and � is the reflection coefficient. Both
ϒ and � are to be determined.

The electric field which penetrates the laminate panel and interacts with the material slabs
is given by E = E0U(X)z, where the dimensionless function U satisfies

d2U

dX2
+ k′2[N2(X/D)+ i

σ0

ωε0
f (−1 + T /T0, X/D)]U = 0, 0 < X < L. (2a)

In this equation ε0 is the permittivity of free space, N2(X/D) is the index of refraction, T0

is the ambient temperature in the absence of microwave radiation, T is the temperature of
the slab in the presence of radiation, σ0 is the conductivity of the slab at T0, and f (−1 +
T /T0, X/D) is the conductivity of the slab normalized by σ0, i.e., f (0) = 1. We take T0 =
300 K and σ0 to be the electrical conductivity of SiC at this temperature. Both N2 and f are
piecewise constant on each material slab. Implicit in (2a) is our assumption that the magnetic
permeability of the constituent slabs is identical to that of free space, µ0.

From the continuity of the tangential electric and magnetic fields at X = 0 and X = L,
we deduce that U and its derivative are continuous there. Combining this fact with (1) and
eliminating ϒ and �, we find that U satisfies the boundary conditions

dU

dX
+ ik′U = 2ik′, X = 0, (2b)

dU

dX
− ik′U = 0, X = L. (2c)

Since both the electric field and the laminate properties only depend upon X, the tempera-
ture T satisfies the one-dimensional heat equation
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ρCp
∂

∂t ′
T = ∂

∂X
{K ∂

∂X
T } + E2

0

σ0

2
f (−1 + T /T0, X/D)|U |2, 0 < X < L, (3a)

where K is the thermal conductivity, ρ is the density, and Cp is the thermal capacity; each is
piecewise constant on each slab. We also require that the temperature satisfies the surface heat
balances

K
∂

∂X
= h(T − T0)+ se(T 4 − T 4

0 ), X = 0, (3b)

−K ∂

∂X
= h(T − T0)+ se(T 4 − T 4

0 ), X = L, (3c)

where h is the convective heat constant, s is the radiation heat constant, and e is the emissivity
of the surface. Implicit in this model of surface heat transfer is the assumption that the sample
sits in an infinite environment whose temperature is held fixed at T0. This idealization is
consistent with the assumption that the laminate is an infinite slab situated in an unbounded,
homogeneous, and isotropic space.

Finally, we assume that the sample is initially at the ambient temperature,

T (X, 0) = T0, 0 < X < L. (3d)

The initial boundary value problem (2–3) constitutes the mathematical statement of the P
problem.

We now state the T problem which parallels the above description. However, in this case,
there are two type of incident polarization that are relevant. The first is the TM polarization
where the electric field is aligned along the Z-axis. In the regions X < 0 and X > L the field
is given by

E = E0[exp(ik′X)+
∞∑

m=−∞
�me2π imY/D e−iβmX]ẑ (4a)

and

E = E0[
∞∑

m=−∞
ϒme2π imY/D eiβmX]ẑ, (4b)

respectively, where the propagation constants βm are given by

βm =
√
k′2 − 4m2π2/D2. (4c)

The terms in the infinite series represent modal solutions to the wave equation which possess
the same periodic structure as the laminate. The reflection and transmission coefficients, �m
and ϒm are to be determined.

In the laminate region,0 < X < L, E = E0U(X, Y )ẑ where the dimensionless field U
satisfies

∇2U + k′2[N2(Y/D)+ i
σ0

ωε0
f (−1 + T /T0, Y/D)]U = 0, 0 < X < L. (4d)

Here N2 and f are now piecewise constant functions of Y . The boundary conditions again are
the continuity of the tangential electric and magnetic fields at the interface X = 0 and X = L.
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These requirements are equivalent to the continuity of the electric field and its X derivative
for this polarization.

The other relevant incident polarization is the T E case where the incident magnetic field
is now aligned along the Z-axis. The magnetic field H is given in the exterior regions X < 0
andX > L by (4a) and (4b), respectively, with E replaced by H and E0 byH0. In the laminate
region, 0 < X < L, H = H0V (X, Y )ẑ where the dimensionless field V satisfies

∇ · { 1

N2 + iσ0f/ωε0
∇V } + k′2V = 0, (5a)

and where the arguments of N2 and f are suppressed for notational convenience. These
functions are again piecewise constant in the slabs.

For this polarization the electric field E in the laminate is obtained from Maxwell’s equa-
tions and the vector form of H; it is

E = iE0

k′[N2 + iσ0f/ωε0](VY x̂ − VXŷ). (5b)

Finally, the boundary conditions again are the continuity of the tangential electric and mag-
netic fields at the interface X = 0 and X = L.

For both TM and T E incident polarizations of the microwave field the temperature T will
depend upon both X and Y according to

ρCp
∂

∂t ′
T = ∇ · {K ∇T } + E2

0

σ0

2
f (−1 + T /T0, Y/D)|E|2, 0 < X < L, (6a)

where

|E|2 = E2
0




|U |2 TM Case

|VX|2 + |VY |2
k′2|N2 + iσ0f/ωε0|2 TE Case.

(6b)

The boundary conditions are again given by (3b) and (3c), except now the effective heat-
transfer coefficient h and the emissivity e are piecewise constant at the slab interfaces. The
initial condition is again given by (3d). The initial-boundary-value problem (4) and (6) con-
stitutes the mathematical statement of the T problem for TM polarization, and (5–6) for the
TE polarization.

We shall now nondimensionalize our boundary-value problems and introduce certain di-
mensionless quantities which will play important roles. We begin by defining the dimension-
less variables

(x, y) = (X, Y )/L, W = −1 + T /T0, t = ρ0Cp0L
2

K0
t ′

and the dimensionless parameters

B0 = hL

K0
, B1 = seT 3

0

h0
, k = k′L, P = σ0L

2

2T0K0
|E0|2, δ = D/L,

and ν = σ0/ωε0, where ρ0, Cp0, h0, and K0 are representative values of the density, the
thermal capacity, the effective heat-transfer coefficient, and thermal conductivity, respectively,
of SiC. Then the P problem (2–3) becomes
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dU

dx
+ k2[N2(x/δ)+ iνf (W, x/δ)]U = 0, 0 < x < 1, (7a)

dU

dx
+ ikU = 2ik, x = 0, (7b)

dU

dx
− ikU = 0, x = 1, (7c)

g(x/δ)
∂

∂t
W = ∂

∂x
{κ(x/δ) ∂

∂x
W } + Pf (W, x/δ)|U |2, 0 < x < 1, (7d)

where g(x/δ) = ρCp/ρ0Cp0 and κ(x/δ) = K/K0.
Finally, we also require that the temperature satisfies the surface heat balances

κ
∂

∂x
W = B0L(W), x = 0, (7e)

−κ ∂
∂x
W = B0L(W) x = 1, (7f)

L(W) = lW + B1q[(1 +W)4 − 1], (7g)

where l and q are constants which may have different values at x = 0 and 1, and the initial
condition

W(x, 0) = 0, 0 < x < 1. (7h)

The initial-boundary-value problem (7) constitutes the dimensionless mathematical statement
of the P problem.

We shall now nondimensionalize the T problem along a similar path. We begin with TM
polarization and set e = E0/E0. Then, since U is dimensionless already (4) becomes

e = ẑ




eikx +
∞∑

m=−∞
�me2π imy/δ e−iβmx 0 < x,

∞∑
m=−∞

ϒme2π imy/δ eiβmx x > 1,

(8a)

where now the propagation constant is given by the slightly modified form

βm =
√
k2 − 4m2π2/δ2. (8b)

The equation for U , (4d), now becomes

∇2U + k2[N2(y/δ)+ iνf (W, y/δ)]U = 0, 0 < x < 1, (8c)

where the Laplacian is in terms of x and y. The boundary conditions again are the continuity
of the tangential electric and magnetic fields across the interfaces at x = 0 and 1.

For the T E polarization Equation (5) is replaced by

∇ · { 1

N2 + iνf
∇V } + k2V = 0, (9a)
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e = i

k[N2 + iνf ](Vy x̂ − Vx ŷ), (9b)

where again the tangential electric and magnetic fields are continuous at x = 0 and 1. Finally,
the heat equation (6) now becomes

g(y/δ)
∂

∂t
W = ∇ · {κ(y/δ)∇W } + Pf (W, y/δ)|e|2 (10a)

where

|e|2 =




|U |2 TM Case

|Vx|2 + |Vy|2
k2|N2 + iνf |2 TE Case.

(10b)

The boundary conditions for W are again the surface heat balances

κ
∂

∂x
W = B0Lδ(W), x = 0, (10c)

−κ ∂
∂x
W = B0Lδ(W), x = 1, (10d)

Lδ(W) = l(y/δ)W + B1q(y/δ)[(1 +W)4 − 1], (10e)

where l and q are piecewise constant functions on each slab, and the initial condition is
again (7g). The initial-boundary-value problem (8) and (10) constitute the dimensionless
mathematical statement of the TM problem and (9–10), the T E problem.

Before ending this section we shall discuss the dimensionless parameters introduced above
and pin down their sizes. The first dimensionless parameter is the fineness ratio of the structure
δ = D/L. We assume that the thickness of the slabs which make up the laminate are much
smaller than the total thickness of the composite panel, i.e., δ << 1. This implies that the
functions N2, f, g, κ, l, and q are piecewise constant functions whose values rapidly change
as one passes through each slab of the laminate. This will allow us to apply homogenization
techniques to simplify the governing equations. The dimensionless wave number k = k′L is
assumed O(1); this implies that the composite panel thickness is on the same order as the
wavelength of the incident wave. For ceramic materials the parameters ν and β are relatively
small [9,11,12], but we shall not exploit these facts here. Similarly, the Biot number B0 is
also small [11] and this will be used later after the equations have been smoothed. Finally, we
assume the dimensionless power P is O(1).

3. Asymptotic analyses

In this section we shall apply asymptotic methods to derive homogenized equations which
describe the microwave heating of the laminate panels in the limit δ → 0. We use the method
of multiple scales [13, Chapter 11] to do this for the P problem and a regular perturbation
scheme for the T problem. Since both of these methods are well known, our presentation will
be somewhat condensed.

3.1. THE P PROBLEM

Since the Equations (7) explicitly contain the variables η ≡ x/δ and x we seek an asymptotic
solution of the form
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U = u(η, x, t, δ) =
∞∑
n=0

δnun(η, x, t), (11a)

W = w(η, x, t, δ) =
∞∑
n=0

δnwn(η, x, t) (11b)

as δ → 0. Inserting these expansions into (7), expanding the nonlinear terms using a Taylor
series, and equating to zero the coefficients of the powers of δ, we obtain an infinite set of
equations. These sequentially determine un(η, x, t) and wn(η, x, t).

The leading-order O(1) equations are

∂2

∂η2
u0 = 0,

∂

∂η
(κ(η)

∂

∂η
w0) = 0 (12a)

and their solutions are

u0 = c0(x, t) + ηd0(x, t) and w0 = a0(x, t)+ b0(x, t)

∫ η

0

1

κ(η′)
dη′, (12b)

respectively. Now these solutions are required to be bounded as η → ∞ and this clearly
implies that u0 = c0(x). We note also that this function satisfies the O(1) boundary condition
∂

∂η
u0 = 0. To make w0 bounded, we first observe that the κ(η) is a periodic function of η

whose period is one. To see this observe that η = x/δ = x′/D and recall that K has period
D. (See Figure 1a.) Then we note that the integral in (12b) becomes infinite as η → ∞ and
this clearly implies that w0 = a0(x, t). This function also satisfies the O(1) thermal boundary

condition
∂

∂η
w0 = 0 at x = 0. Finally, we shall not use a0 and c0, but rather w0(x, t) and

u0(x, t) for notational convenience.
The order O(δ) equations are

∂2

∂η2
u1 = 0,

∂

∂η
(κ
∂

∂η
w1)+ κ ′ ∂

∂x
w0 = 0, (13a)

where the prime denotes differentiation with respect to the argument of κ . The solutions of
these equations are given by

u1 = c1(x, t) + ηd1(x, t), w1 = a1(x, t)− η
∂

∂x
w0 + b1(x, t)

∫ η

0

1

κ(η′)
dη′. (13b)

The bounded solution of the first equation is again u1 = c1(x, t). The O(δ) boundary condi-
tions for u1 are u1η + u0x + iku0 = 2ik at x = 0 and u1η + u0x − iku0 = 0 at x = 1. Since u1

is a function only of x and t we obtain

∂

∂x
u0 + iku0 = 2ik, x = 0, (14a)

∂

∂x
u0 − iku0 = 0, x = 1. (14b)

The second solution in (13b) remains bounded only when
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∂

∂x
w0 = κ̂−1b1(x, t) (15a)

which follows by letting η → ∞ through the positive integers. Here the constant κ̂ is defined
by

κ̂ = 1∫ 1
0

1
κ

dη
≡ κ1κ2

ακ2 + (1 − α)κ1
, (15b)

where κj is the dimensionless thermal conductivity in the j th slab, j = 1, 2. Inserting (15a)
into the second expression in (13b) gives

w1 = a1(x, t)+Q(η)
∂

∂x
w0, Q(η) ≡ −η + κ̂

∫ η

0

1

κ(η′)
dη′, (15c)

where the function Q(η) is periodic with period 1. The O(δ) boundary conditions for w1 are
κ(w1η + w0x) + L(w0) = 0 at x = 0 and −κ(w1η + w0x) + L(w0) = 0 at x = 1. Since it
follows from (15c) that κ(w1η + w0x) = κ̂w0x , we deduce

−κ̂ ∂
∂x
w0 + B0L(w0) = 0, x = 0, (16a)

κ̂
∂

∂x
w0 + B0L(w0) = 0, x = 1. (16b)

The final stage now is to obtain equations for u0 and w0. These come from the solvability
conditions for the O(δ2) equations which are

∂2

∂η2
u2 = −{ ∂

2

∂x2
u0 + k2[N2(η)+ iνf (w0, η)]u0}, (17a)

∂

∂η
(κ
∂

∂η
w2) = {g(η) ∂

∂t
w0 − κ(η)

∂2

∂x2
w0 − Pf (w0, η)|u0|2} − M(w1), (17b)

M(w1) = 2κ
∂2w1

∂η ∂x
+ κ ′ ∂

∂x
w1. (17c)

Integrating (17a) once with respect to η, we obtain

∂

∂η
u2 = −{η ∂

2

∂x2
u0 + k2[

∫ η

0
(N2(η′)+ iνf (w0, η

′)) dη′]u0}.

For this to be bounded as η → ∞ we demand that

∂2

∂x2
u0 + k2[N̂2 + iνf̂ (w0)]u0 = 0, 0 < x < 1, (18a)

where

N̂2 =
∫ 1

0
N2(η) dη = αN2

1 + (1 − α)N2
2 ,

f̂ (w0) =
∫ 1

0
fP (wo, η) dη = αf1(w0)+ (1 − α)f2(w0);

(18b)
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N2
j is the index of refraction and fj the conductivity in the j th slab for j = 1, 2. This is our

averaged equation for u0.
The solvability condition for (17b) is somewhat more involved and is provided in Appen-

dix A. The result is

ĝ
∂

∂t
w0 = κ̂

∂2

∂x2
w0 + P f̂P (w0)|u0|2, 0 < x < 1 (19a)

where

ĝ =
∫ 1

0
g(η) dη = αg1 + (1 − α)g2. (19b)

This our averaged equation for w0.
Equations (18) and (19) along with their boundary conditions (14) and (16), respectively,

and the initial condition w0 = 0 constitute the averaged initial-boundary-value problem which
will be attacked and studied in the next section.

3.2. THE T PROBLEM

We begin this section with the analysis of the magnetic field in the TE polarization, i.e., with
an asymptotic analysis of (9a). There are two points to note before proceeding. First, we shall
make explicit use of the piecewise character of the electrical properties. Secondly, we seek a
regular expansion of V in the form

V (x, y, δ) = v(x, η, δ) =
∞∑
n=0

δnvn(x, η), (20)

where now η = y/δ = Y/D. Since the incident wave striking the panel is independent of
Y we require that V is periodic in Y with period D, or equivalently that v and all the vn are
periodic functions of η with period 1. We note here that a multiscale expansion similar to
(11a) can be assumed and a similar analysis carried out. An averaged equation can be found
whose solution depends upon x and y. However, this solution does not satisfy the boundary
conditions at the interfaces x = 0 and x = 1. A boundary-layer analysis is required to fix this
nonuniformity. The present approach is simpler and does not suffer this complication.

Before continuing forward with the determination of the vn, we explicitly state the bound-
ary conditions required at the material interfaces η = 0, α, and 1. First, the continuity of the
z-component of the magnetic field requires [v] = 0, i.e., v is continuous across these inter-
faces. This, of course, implies the same for all the vn. Next, the continuity of the x-component

of the electric field requires [R ∂

∂η
v] = 0, where R = 1/[N2 + iνf ], i.e., R

∂

∂η
v is continuous

across each material interface. Secondly, since the vn are periodic functions of η with period 1,
we study the solutions of (9a) only for 0 < η < 1. Thirdly, since there is no ambiguity in the
values of vn at each interface, the periodicity of the vn implies vn(x, 0, t) = vn(x, 1, t). Next, it

is clear that periodicity requires
∂

∂η
vn(x, 1+, t) = ∂

∂η
vn(x, 0+, t) where the + denote values

slightly above the interface. Using this and the fact that R
∂

∂η
vn is continuous across x = 1 we

finally deduce

R(1−)
∂

∂η
vn(x, 1−, t) = R(0+)

∂

∂η
vn(x, 0+, t), (21)
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where the − denotes values slightly below the interface.
We now insert (20) into (9a), expand the nonlinear terms using a Taylor series, and equate

to zero the coefficients of the powers of δ to give an infinite set of equations. These sequentially
determine the vn(x, η, t). The O(1) equation is

∂

∂η
(R

∂

∂η
v0) = 0 (22a)

whose solution is readily found to be

v0 = a0(x, t)

∫ η

0

1

R
dη + b0(x, t). (22b)

This function is clearly continuous across η = α and so is R
∂

∂η
v0 = a0. It must also be

periodic, i.e., v0(0) = v0(1), which implies that a0 = 0. Thus v0 = b0 is just a function of x
and t . For notational ease we shall just refer to v0(x, t). It is then clear that v0 automatically
satisfies (21), too.

The O(δ) equation for v1 is precisely (22a) and we deduce as above that it is a function of
x and t . The O(δ2) equation is

∂

∂η
(R

∂

∂η
v2) = −{R(η) ∂

2

∂x2
v0 + k2v0} (23a)

and integrating this once with respect to η, we have

R(η)
∂

∂η
v2 = a1(x, t) − { ∂

2

∂x2
v0

∫ η

0
R(η′) dη′ + k2ηv0} (23b)

where a1(x, t) is unknown at this stage. Now it is clear from this result that R
∂

∂η
v2 is continu-

ous across η = α. The application of the periodicity condition (21) leads to our new averaged
equation

∂2

∂x2
v0 + k2N̂2v0 = 0, 0 < x < 1, (24a)

where now

N̂2 = 1∫ 1
0 R(η) dη

= (N2
1 + iνf1)(N

2
2 + iνf2)

α(N2
2 + iνf2)+ (1 − α)(N2

1 + iνf1)
. (24b)

The evaluation of the integral in (24b) anticipates the fact that the temperature, to leading
order, is independent of η. Now, Equation (23b) can be further integrated to determine v2 up
to a single unknown function of x and t , but we shall not do so here. Finally, the electric field
corresponding to v0 is obtained from (9b); it is

e = − iR

k

∂

∂x
v0ŷ. (25)

The differential equation (24a) requires two pieces of boundary data which we shall now
derive. First, we recall that the dimensionless magnetic field h in the regions x < 0 and x > 1
are given by (8a) with e replaced by h. Then at x = 0 the continuity of this field implies
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v(0, η, t) = 1 +
∞∑

m=−∞
�me2π imη,

where we have replaced y/δ by η. This relationship holds true for 0 < η < 1. Now we expand
v on the left-hand side of this expression according to (20) and also introduce a power series
expansion of �. Equating the leading-order O(1) terms gives

v0(0, t) = 1 +
∞∑

m=−∞
�0
me2π imη, (26a)

where �0
m is the leading term in the � expansion.

Now, the tangential component of the electric field must be continuous across x = 0. In

the region x < 0 it is given by
−i

k

∂

∂x
h · ŷ where we use the fact R = 1 in free space. In the

region 0 < x < 1 it is given to leading order by (25). Equating these two relationships gives
to leading order

R
∂

∂x
v0(0, t) = ik − i

∞∑
m=−∞

βm�
0
me2π imη. (26b)

Finally, integrating (26a) and (26b) with respect to η from 0 to 1, we obtain v0 = 1 + �0
0 and

R̂v0x = ik(1 − �0
0), respectively, where R̂ = 1/N̂2 and β0 = k. Elimination of �0

0 from
these expressions yields

∂

∂x
v0 + ikN̂2v0 = 2ikN̂2, x = 0. (27a)

A similar analysis done at x = 1 gives

∂

∂x
v0 − ikN̂2v0 = 0, x = 1. (27b)

Equations (24) and (27) constitute the electromagnetic equations and boundary conditions
for T E polarization.

The asymptotic analysis for the electric field in the TM polarization case follows along
exactly the same lines. The only difference is that the dimensionless electric field U is con-
tinuous and its normal derivative across a material interface is too. Thus, the function R will
not appear in any of the boundary calculations. For sake of brevity we simply state the results
here. They are U ∼ u0(x, t) where u0 satisfies precisely Equation (18) and the boundary
conditions (14).

We finish this section with an analysis of the thermal portion of the T problem, i.e., an
asymptotic analysis of (10). Following a similar path to the one above we seek a regular
expansion of W in the form

W(x, y, δ) = w(x, η, δ) =
∞∑
n=0

δnwn(x, η). (28)

Since the electric field is periodic in η, the source term in the heat equation is too. Thus,
we require that w and the wn are periodic functions of η with period 1. The temperature is

continuous across the material interfaces and thus, so are the wn. The thermal flux κ
∂

∂η
w are

also required to be continuous across material interfaces. This, the periodicity of w, and the
same reasoning used to deduce (21) yield
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κ(1−)
∂

∂η
wn(x, 1−, t) = κ(0+)

∂

∂η
wn(x, 0+, t). (29)

We now insert (28) into (10a) and go through the same process. Skipping the calculations,
as they are very similar to those used to deduce v0, we find that w0 and w1 are functions only
of x and t . Proceeding forward we find that the O(δ2) equation becomes

∂

∂η
(κ
∂

∂η
w2) = g(η)

∂

∂t
w0 − {κ ∂

2

∂x2
w0 + Pf (w0, η)|e(x, t)|2} (30)

where e is given by (25) for TE incident polarization and by u0ẑ for TM polarization.
Integrating (30) once with respect to η and demanding (29) yields for the TE case

ĝ
∂

∂t
w0 = κ̂

∂2

∂x2
w0 + P

k2
{ αf1(w0)

N4
1 + ν2f 2

1 (w0)
+ (1 − α)f2(w0)

N4
2 + ν2f 2

2 (w0)
}|vox|2, (31a)

where ĝ is given by (19b) and κ̂ is now given by

κ̂ =
∫ 1

0
κ dη = ακ1 + (1 − α)κ2. (31b)

For the TM case we obtain exactly (19a) with κ̂ given by (31b).
The leading-order approximation w0 is a function of x and t . If the dimensionless heat-

transfer function l and radiative function q contained in the boundary condition (10) are
constant, i.e., they are not material-dependent, then w0 also satisfies (16). On the other hand,
if they are not constant, then the boundary conditions given in (10) depend upon η. This
implies that w0 is not a uniform approximation to w in x. We have performed a boundary-
layer analysis near x = 0 and x = 1 to remove this nonuniformity, but omit the details here
for brevity. The results of this analysis lead to the averaged boundary conditions

−κ̂ ∂
∂x
w0 + B0L̂(w0) = 0, x = 0, (31c)

κ̂
∂

∂x
w0 + B0L̂(w0) = 0, x = 1, (31d)

where

L̂(w0) = l̂w0 + B1q̂{(w0 + 1)4 − 1}, (31e)

l̂ = αl1 + (1 − α)l2, q̂ = αq1 + (1 − α)q2. (31f)

4. Small Biot-number-analyses

We begin this section by considering the P problem which is restated here for convenience as

ĝ
∂

∂t
w0 = κ̂

∂2

∂x2
w0 + P f̂ (w0)|u0|2, 0 < x < 1, (32a)

−κ̂ ∂
∂x
w0 + B0L1(w0) = 0, x = 0, (32b)
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κ̂
∂

∂x
w0 + B0L2(w0) = 0, x = 1, (32c)

w0(x, 0) = 0, 0 < x < 1. (32d)

∂2

∂x2
u0 + k2[N̂2 + iνf̂ (w0)]u0 = 0, 0 < x < 1, (33a)

∂

∂x
u0 + iku0 = 2ik, x = 0, (33b)

∂

∂x
u0 − iku0 = 0, x = 1, (33c)

where ĝ, κ̂ , f̂ and N̂2 are defined by (19b), (15b), and (18b), respectively. The subscripts on
the boundary operator L denote the possibility that the first and last slabs in the laminate are
made of different materials.

In many applications the Biot number B0 is small and this has been exploited [9,11,12] to
determine an asymptotic approximation of the solutions to (32–33). Following this analysis
we introduce a slow time variable τ = B0t and a rescaled dimensionless power parameter
p = P/B0, where p = O(1). This new time scale allows us to study the heating process
on a long time scale that is dictated by the small heat loss on the boundaries x = 0 and 1.
The functions w0 and u0 are then expanded in a power series in B0 and this yields in the
usual fashion a infinite number of equations that must be solved sequentially. To leading order
the calculation shows that w0 is a function only of τ , but u0 depends on both independent
variables. A solvability condition is applied at the next order and this gives

ĝ
dw0

dτ
= −{L1(w0)+ L2(w0)} + pf̂ (w0)||u0||2, (34a)

||u0||2 ≡
∫ 1

0
|u0|2 dx, (34b)

w0(0) = 0. (34c)

In these equations w0 and u0 denote the leading-order terms in the Biot-number expansion.
Accordingly, the function u0 determined by (33) depends upon τ parametrically through
f̂ (w0). It is interesting to observe at this point that the effective thermal conductivity κ̂ plays
no role at this stage.

The problem now is to solve (33) and (34). Since u0 depends only upon τ parametrically,
an explicit solution to (33) can be obtained; it is

u0 = A exp(iKx)+ B exp(−iKx), (35a)

where K, A, and B are defined by

K(τ) = k

√
N̂2 + iνf̂ (w0), (35b)

A(τ) = −2k(K + k)

G
exp(−iK), (35c)
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B(τ) = −2k(K − k)

G
exp(+iK), (35d)

G(τ) = (K − k)2 exp(iK)− (K + k)2 exp(−iK). (35e)

Substituting (35a) in (34b), performing the integration, and inserting the resulting expression
into (34a) yields an ordinary differential equation for w0. This equation, along with the initial
condition (34c) must in general be solved numerically. However, the steady-state temperature
w∗

0 is implicitly given by

p = L1(w
∗
0)+ L2(w

∗
0)

f̂ (w∗
0)||u0||2(w∗

0)
. (36)

This will be studied shortly.
We now attack the T problem using the same approach. We begin with the case of TM

polarization and find that w0 and u0 are again described by (33–34) with two minor changes;
the constant κ̂ is now given by (31b) and the boundary operators Lj (w0) are each replaced
by L̂(w0) defined in (31e–f). Performing the small-Biot-number approximation yields with
these changes precisely (34–36). In particular the steady-state temperature w∗

0 is now given
implicitly by

p = 2L̂(w∗
0)

f̂ (w∗
0)||u0||2(w∗

0)
, (37)

where again κ̂ is again plays no role at this stage.
Finally, we tackle the TE polarization using the same approach. We find that w0 again

satisfies (32) with two exceptions. The first was given above; the boundary operators Lj (w0)

are each replaced by L̂(w0). The second is the source term in (32a); |u0| is replaced by |e|
where e is defined in (25). The small-Biot-number analysis then gives

ĝ
dw0

dτ
= −2L̂(w0)+ p

k2
{ αf1(w0)

N4
1 + ν2f 2

1 (w0)
+ (1 − α)f2(w0)

N4
2 + ν2f 2

2 (w0)
}||v0x||2, (38a)

||v0x||2 =
∫ 1

0
|v0x|2 dx. (38b)

In Equation (38) the function v0 satisfies (24) with boundary conditions (27). These are
slightly different from (33), but the solution can be obtained in a similar fashion. The result is

v0 = A exp(iKx)+ B exp(−iKx) (39a)

where K, A, and B are now defined by

K(τ) = kN̂, (39b)

A(τ) = −2K(K + k)

G
exp(−iK), (39c)

B(τ) = −2K(k −K)

G
exp(+iK), (39d)
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G(τ) = (K − k)2 exp(iK)− (K + k)2 exp(−iK), (39e)

where N̂2 is given by (24b). Finally, the steady-state temperature w∗
0 is now given implicitly

by

p = 2k2L̂(w∗
0)

S(w0)||v0x ||2(w∗
0)
, (40a)

S(w0) = αf1(w0)

N4
1 + ν2f 2

1 (w0)
+ (1 − α)f2(w0)

N4
2 + ν2f 2

2 (w0)
. (40b)

5. Numerical experiments and discussion

We now apply our theories to the two chemical-vapor applications described in the intro-
duction. The first deals with the fabrication of a SiC composite panel and is mathematically
moedled as the P problem which is described by Equations (14), (18), and (19). The second
deals with heating a porous slab and is mathematically modeled as the T problem which
is described by Equations (24), (27), and (21). We numerically approximate the steady-state
solutions to these two problems using a standard second-order finite-difference scheme. This
yields an algebraic system for the temperature and electric (or magnetic) field values. We
then apply standard continuation techniques to determine the relationship between the applied
power and the temperature. We used three hundred grid points over the domain 0 ≤ x ≤ 1 to
produce approximates to the temperature and produced approximations to the temperature and
electromagnetic fields that were accurate within 1%. This method produces accurate methods,
regardless of the size of the Biot number. Finally, we compare these numerical approximations
against the results of the small Biot number theory which are given by (36), (37) and (40).

For the P problem, we investigate a simplified structure that is motivated by the CVI
experiments found in Jaglin et al. [2]. The composite panel is constructed from two type of SiC
sheets. The first is a fibrous sheet composed of SiC fibers. The second is the same sheet, except
it has been embedded with carbon particles to enhance the electrical conductivity. Sheets of the
first type are layered to produce a laminate which occupies the region 0 < X < αD. Sheets of
the second type are layered to produce the laminate which occupies the region αD < X < D.
This composition is then repeated to build up the composite panel.

To estimate the physical properties of the first sheet, we use a mixture theory assuming
that the material properties of the fabric are functions of the volume fraction of SiC in the
fabric. Typical values of volume fraction are near 50%, and we simply divide the scaled
material properties of SiC by two. In the second sheet, we assume the embedded particles
completely fill the voids and take its material properties to be identical to SiC. In addition,
we assume that the effective heat transfer of the two laminates are the same. The resulting
nondimensional quantities are shown in the first column of Table 1 where we have assumed
that the characteristic electrical conductivity is that of SiC at room temperature.

Figure 2 shows the temperature w0(0) plotted against the input power p = P/B0 for two
different values of the Biot number B0. The solid curves are the results of our finite difference
calculations, while the dots on these curves correspond to the small-Biot-number result (36).
The solid lines correspond to α = 0·1, i.e., 10 percent of the laminate is composed of sheets
of the first type and 90 percent of the second type, the dashed lines correspond to α = 0·4, the
dashed-dotted lines correspond to α = 0·6, and the fine dotted lines correspond to α = 0·9.



190 G. A. Kriegsmann and B. S. Tilley1

Table 1. Dimensionless parameters for each of the systems considered.

Parameter Fabric-layers [2] H2 filled pores [5]

N2
1 5 1

N2
2 10 10

ν 0·01 0·01

k 1 1

f1
1
2 exp(3w0) 0

f2 exp (3w0) exp(3w0)

κ 2 200

B1 10−4 10−4

We observe several interesting results from these curves. First, more power is required to
reach a prescribed w0(0) as α is increased. This is because the effective electrical conductivity
of the composite panel decreases as α increases, i.e., as more of the fibrous sheets are used
to build the laminate. Second, the curves show the familiar S-shaped response found for solid
slabs [11]. The lower branch of this curve corresponds to a balance between the microwave
power put into the structure and the heat lost at is surfaces. As the power is increased passed
a critical point this balance is lost; the surfaces can not dissipate the required power. As the
temperature rises, the effective electrical conductivity of the composite panel increases and
this causes the skin effect which reduces the electric field in the panel. This reduction limits
the power and produces the upper branch. This is again borne out in Figure 2. For a fixed power
level, the upper branch decreases as α decreases and the composite panel becomes electrically
more conductive. This exacerbates the skin effect and reduces the final temperature. Finally,
we observe that for these values of B0, the small-Biot-number approximation yields excellent
agreement with our numerical simulations.

Figure 3 shows the deviation of the temperature w0(x) from its mean value w̄0 = ∫ 1
0 w0(x) dx

and the electric field from its mean value given by (34b) for B0 = 0·01, α = 0·9, and p = 0·5.
From Figure 2 we see that this value of p yields solutions on the lower and upper branches.
The solid curves in Figure 3 correspond to the lower branch solution and the dotted curves to
the upper branch. There are two interesting observations to be made at this point. First, the
temperature on the lower branch is essentially the constant given by the corresponding graph
in Figure 2. The electric field on the other hand oscillates about its mean. Secondly, the roles
are reversed for the upper branch solution. The temperature now varies by about ten percent
from its mean value and the electric field is essentially a constant, except for a small interval
near x = 0. This localization is the skin effect.

Now we consider the T problem. As a physical example, we consider a periodic structure
composed of a SiC layers separated by pores filled with inert H2 gas. Within the fundamental
cell the gas occupies the region 0 < Y < αD, and the solid the region αD < Y < D.
This system is a two-dimensional extension of the problem considered in reference [5], where
the authors considered only one circular pore. This assumption, as well as taking a tempera-
ture independent electrical conductivity, decouples the wave equation from the heat equation.
Although our structure is two-dimensional, it takes both of these features into account. The
nondimensional parameters for this system are found in the second column of Table 1.
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Figure 2. Plots of temperatures wo(0) for different power levels p at different Biot numbers B0 = 0·01 and
B = 0·1 in the P configuration. Lines correspond to the solution of the full system with the solid curves cor-
responding to α = 0·1, dashed curves corresponding to α = 0·4, dashed-dot curves corresponding to α = 0·6,
and dotted curves corresponding to α = 0·9. The solid dots on the curves are the approximations using the
small-Biot-number analysis in Equation (36).

First we consider the TM polarization. Figure 4 shows the corresponding S-shaped curves
in this physical situation for Biot numbers B0 = 0·01 and B0 = 0·1. Solid lines correspond
to α = 0·1 (10% volume fraction of the pore), dashed lines correspond to α = 0·4, dashed-
dotted lines correspond to α = 0·6, and fine dotted lines correspond to α = 0·9. We note
again that as the amount of SiC in the structure decreases, larger power levels are required to
reach a prescribed temperature. Similarly, we observe that increasing the amount of SiC in the
structure lowers the temperature on the upper branch for a given power level. In all cases, the
small-Biot-number approximations, given by the individual dots, are in excellent agreement
with our numerical simulations.
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Figure 3. Plots of temperature profiles (upper figure) and electric field-strengths (lower figure) at p = 0·5 for
α = 0·9 for the lower branch (solid curve) and the upper branch (dashed line). The both are plotted as the
deviation from the average value. Notice that the temperature deviation is indicative of the electric-field strength.

In Figure 5, we plot the deviation of the temperature w0(x) from its mean value w̄0 and
|u0|2 for p = 1·0 and α = 0·4, where the solid lines correspond to the lower branch of
the S-shaped curve, while the dotted lines correspond to the upper branch. We observe that
the temperature is nearly uniform on the lower branch and the electric-field strength exhibits
behavior typical of a lossless medium. Along the upper branch, however, the electric field
strength is again nearly zero, except for a small interval near x = 0; this is again the skin
effect. In addition, the very small value of the electric field in the interior of the structure
essentially shuts off the source term in the effective heat equations. This produces a nearly
linear temperature profile in this region and this is borne out in Figure 5.

We now consider the TE polarization. Figure 6 shows the corresponding S-shaped curves
in this physical situation for Biot numbers B0 = 0·01 and B0 = 0·1. Again, the solid lines
correspond to α = 0·1, the dashed to α = 0·4, the dashed-dotted to α = 0·6, and the fine
dotted to α = 0·9. There are two interesting observations to be made at this point, each
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Figure 4. Plots of temperatures wo(0) for different power levels p at different Biot numbers B0 = 0·01 and
B = 0·1 in the TM polarization for the T orientation. Lines correspond to the solution of the full system with the
solid curves corresponding to α = 0·1, dashed curves corresponding to α = 0·4, dashed-dot curves corresponding
to α = 0·6, and dotted curves corresponding to α = 0·9. The solid dots on the curves are the approximations using
the small-Biot-number analysis in Equation (37).

contrasting the difference between the TM and T E polarizations. These differences are seen
by comparing Figures 4 and 6. First, for a given value of α more power is required to reach
a prescribed temperature in the TE case. This is trend is clearly borne out when considering
the critical power. For example, if we take α = 0·1 and B0 = 0·1, then from Figure 4 the
critical power for the TE polarization is ∼ 0·5; for the same α and B0 the critical power for
the T E case is ∼ 3·0. The second observation is for a given p, α and B0, the temperature on
the upper branch for the TE polarization is less than the corresponding value for the TM case.
For example, if we take p = 1, B0 = 0·1, and α = 0·4, then from Figure 4 the temperature
on the upper branch is ∼ 3·75; the for the same parameters, the corresponding temperature in
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Figure 5. Plots of temperature profiles w0(x) − w̄0 and the electric-field distribution |u0|2 for B0 = 0·01 in the
T orientation with α = 0·5 for p = 1. Solid curves correspond to profiles on the lower branch of the S-shaped
curve, while dashed lines correspond to upper branch profiles.

the TE case is ∼ 2·6. Both these observations indicate that the electromagnetic fields couple
more strongly to the composite panel in the TM case.

Figure 7 shows the deviation of the temperature w0(x) from its mean value w̄0 and |e|2 for
α = 0·1, p = 2, and B0 = 0·1. Again, the solid curves correspond to the lower branch and the
dashed curves to the upper branch. The results for the lower branch are qualitatively similar to
those for the TM case. However, the behavior on the upper branch is different. First, we note
that the electric field intensity does not exhibit the typical skin effect at x = 0, but is small
throughout the interior of the structure. This can be understood by examining the effective
index of refraction N̂2 given by Equation (24b). Setting f1 = 0 and N2

1 = 1 for this physical
application we obtain

N̂2 = N2
2 + iνf2

(1 − α)+ α(N2
2 + iνf2)

. (41)
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Figure 6. Plots of temperatures wo(0) for different power levels p at different Biot numbers B0 = 0·01 and
B = 0·1 in the T E polarization for the T orientation. Lines correspond to the solution of the full system with the
solid curves corresponding to α = 0·1, dashed curves corresponding to α = 0·4, dashed-dot curves corresponding
to α = 0·6, and dotted curves corresponding to α = 0·9. The solid dots on the curves are the approximations using
the small-Biot-number analysis in Equation (37).

On the upper branch f2 >> 1 and this makes N̂2
2 ∼ 1/α2, which clearly diminishes the skin

effect, since this depends upon the imaginary part of N̂2.
Finally, we observe that the temperature profile on the upper branch is slightly warmer

in the center of the structure and symmetric. The latter feature stems from the symmetry of
|e|2 as shown in Figure 7. And the former behavior suggests that the T E polarization may be
more useful than the TM in the CVI process where a hotter center region would cause the
composite to form from the interior to the exterior [1].
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Figure 7. Plots of temperature profiles w0(x) − w̄0 and the electric-field intensity |e|2 for B0 = 0·1 for the T
orientation with α = 0·1 for p = 2. Solid curves correspond to profiles on the lower branch of the S-shaped curve,
while dashed lines correspond to upper branch profiles.

6. Conclusions

In this paper we have studied the microwave heating of two different composite panels. In
the first, the P problem we used multiple scale analysis to systematically derive averaged
wave and heat equations. The solutions of these equations were approximated using finite
differences and these results were compared to those obtained from a small-Biot-number
analysis. The agreement was excellent for Biot numbers ∼ 0·1. More importantly, we were
able to establish trends between the steady-state temperature and the physical properties of
the laminates which make up the panel.

In the T problem we used a variation of slender-body theory to systematically derive the
averaged wave and heat equations. These equations are almost identical to those of the P
problem for TM incident microwaves; only the effective thermal conductivity is different.
However, in the case of TE polarization the equations are somewhat different. The averaged
wave equation now has a more complicated effective index of refraction. In addition to a mod-
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ified effective thermal conductivity, the heat equation has a significantly different source term.
This source term has an important consequence in the microwave heating of this structure.
Specifically, we have shown through our numerical simulations that far more power is required
to heat the panel for this polarization than the TM. However, our simulations also show that
the thermal gradients are larger in this case than the TM. This suggests that, although the TE
polarization is less efficient in heating the slab, the gradients may in fact be more conducive
to CVI processes.

Appendix A

In this appendix we consider the solvability condition for (17b–17c) and deduce the averaged
equation (19). We begin by combining (15c) and (17c) to obtain

M(w1) = 2κ
dQ

dη

∂2

∂x2
w0 + κ ′[ ∂

∂x
a1 +Q(η)

∂2

∂x2
w0].

Next, we integrate (17b) with respect to η, insert the above expression into this result, do an
integration by parts to find

κ
∂

∂η
w2 = ∂

∂t
w0

∫ η

0
g(η′) dη′ − κ̂η

∂2

∂x2
w0 − P |u0|2

∫ η

0
f (w0, η

′) dη′ + κ(
∂

∂x
a1 +Q(η)).

We again require that
∂

∂η
w2 is bounded as η → ∞. Since κ(

∂

∂x
a1 +Q(η)) is bounded we

deduce (19).
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